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The process of condensation on a grooved surface is analyzed and the basic param- 
eters of the process determined. Expressions are obtained for the heat-transfer 
coefficient. 

The use of grooved surfaces in evaporation and condensation equipment to intensify heat 
exchange has increased in recent years. Among such equipment, we find threaded arterial 
heat pipes, heat pipes with longitudinal grooves, and others. When condensers are con- 
structed from such heat pipes information on the heat-transfer coefficients for condensation 
on the grooved surface is necessary. General features of a model of the condensation pro- 
cess on a grooved surface were formulated in [i] for heat pipes. However, the method of 
analysis used therein proves very cumbersome, and does not permit clarification of the char- 
acteristic peculiarities of the process analyzed. 

Below we will describe a more general model of the process of condensation on a grooved 
surface, the analysis of which will determine the basic parameters of the process, defining 
condensation, and expressions will be obtained for the heat-transfer coefficient. 

In low-temperature heat pipes the thermal conductivity of the construction material is, 
as a rule, several hundred times higher than that of the heat-exchange agent. Therefore, 
the main thermal resistance in film condensation is connected with the liquid film formed 
on the grooved surface, and vapor condensation on condensers with grooved heat pipes occurs 
mainly on the fins where the liquid layer is thinner. 

The proposed model is based on the following assumptions: 

a) vapor condensation occurs on the fins; 

b) the liquid formed in condensation flows from the film on the fin into the groove 
under the action of surface tension forces; the free surface of the liquid film 
must have a corresponding curvature; 

c) the liquid entering the groove is also carried by surface tension forces along the 
groove from the condenser to the evaporator; 

d) the force of gravity is absent; 

e) friction of the vapor on the film is neglgible. 

The geometry of the groove and fin can vary. In [i] the case of a rectangular fin with 
rounded edges was considered. A more general case of arbitrary fin form can be analyzed. 

We will consider liquid condensation on a portion of a grooved surface (Fig. i). The 
liquid film thickness on the fin is very small, and the Reynolds number for the flow in the 
film across the fin is on the order of 10 -2 [i]. As a consequence, the convective term may 
be neglected in the equation of motion. For the case of a thin film satisfying the condition 

<< R, where 6 is the film thickness and R is the radius of curvature of the fin, the 
equation of motion has the form 

dP l d2U 

ds = ~l  d~lZ (i) 

The heat liberated in condensation is carried off by thermal conductivity through the 
film. For the local thermal flux through the film, we have 
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Fig. i. Element of grooved 
surface. For derivation of 
boundary condition (ii). 

q = %t Tv-- Tw 
6 

Then the following continuity equation may be written, reflecting the law of concentration 
of quantity of liquid in the film: 

6 

d t' vd : rv--rw 
ds , LPz ~ (2) 

o 

Assuming adhesion of the liquid to the fin and absence of friction on the free film surface, 
from Eq. (I) the following expression can be obtained for the velocity profile: 

U =- l_l__ dP___~l. (2n6_ ~1~)" 
21h ds (3) 

Substituting the film velocity profile (3) into the continuity equation (2), we obtain 

d---- (6a .dPl ) _  3~xl )~l Tv--Tw (4) 
ds ds Lp l 6 

In Eq. (4) there appears a quantity difficult to identify in experiment, Tw, the temperature 
of the fin wall surface. If we introduce the heat-transfer coefficient Sex t , which considers 
the thermal resistance of the heat pipe wall and the thermal resistance of external heat ex- 
change, then in place of the temperature T w in Eq. (4) we can introduce the temperature of 
the medium surrounding the thermal tube Tex t . As a result, Eq. (4) transforms to 

d (6a dPl ) - -  3Pl~l TV-Tex t 
ds ds LPl 6 @ ~'._L_/ (5) 

ext 
Under zero gravity conditions, the liquid in the film flows under the influence of sur- 

face tension forces. This also occurs for a horizontal surface under terrestrial conditions. 
Therefore, for any point of the free surface, the Laplace relationship 

Pv - Pz = ~K. 

must be satisfied. The vapor pressure PV is assumed constant above the film surface. Then 

dP l dK 
�9 - -  a (6) 

ds ds 
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Substituting Eq. (6) in Eq. (5), we obtain 

d dK'] _ 3v l ~l (TV__Text). (7) 

The f i l m  f r e e  s u r f a c e  c u r v a t u r e  K a p p e a r i n g  i n  Eq. (7)  can  b e  e x p r e s s e d  i n  t e r m s  o f  t h e  f i n  
s u r f a c e  c u r v a t u r e  Kp and t h e  f i l m  t h i c k n e s s  6 i n  t h e  f o l l o w i n g  m a n n e r  [ 1 ] :  

d26 

K = Kp + dsZ (8) 
( 
IT}  ] 

Equations (7) and (8) then represent a system of equations for determination of the two un- 
known functions ~(s) and K(s). 

From the symmetry of the surface form relative to the middle of the fin s = 0 and the 
equality to zero at that point of the liquid flow rate, we obtain two boundary conditions 

dgds s=0 = 0, -~sdK Is=0 = 0. (9)  

The two r e m a i n i n g  b o u n d a r y  c o n d i t i o n s  m u s t  b e  f o r m u l a t e d  a t  t h e  o t h e r  end o f  t h e  f i l m ,  i . e . ,  
at the point of transition of the film surface into the meniscus of the liquid in the groove. 
At this point the film surface curvature must be equal to the curvature of the meniscus in 
the groove: 

i 
Kfs-l- ' -  R~,~ (lo) 

This last boundary condition is obtained from the requirement that the slope of the tangents 
at the point s = ~ to the film surface and to the meniscus be equal. The concrete descrip- 
tion of this condition depends on the geometry of the fin and groove. Thus, in the case of 
a trapezoidal fin with planar upper surface and rounded edge, this condition is written in 
the following manner: 

R,~ (sin ~ - -  d8 c o s  
\ ( 11 )  

d8 12-- " @ (51s=l @ r) sin ~ = W - -  Ii, 

w h e r e  ~ = ( l  --  ;1 ) / r ,  and  i s  a c o n s e q u e n c e  o f  t h e  g e o m e t r i c  r e l a t i o n s h i p  ( s e e  F i g .  1 ) :  

Rm sin (~ - -  a) + (8 § r) sin ~ -- W - -  li, 

and  a l s o  o f  t h e  f a c t  t h a t  t a n  a = d ~ / d s .  

B o u n d a r y  c o n d i t i o n s  ( 1 0 ) ,  (11)  m u s t  b e  s p e c i f i e d  a t  t h e  p o i n t  l o c a t e d  a t  t h e  t r a n s i t i o n  
from film flow to liquid flow in the groove, where Eqs. (i), (2) are still applicable. This 
point should be chosen farther from the middle of the fin, the larger the curvature of the 
meniscus in the groove. 

Equations (7), (8) with boundary conditions (9)-(11) permit determination of the film 
thickness and curvature distribution across the fin. This information is sufficient to 
determine the condensation rate. In fact, the quantity of vapor condensed on a fin per unit 
time is equal to the liquid flow through the film section s = Z: 

5 

m =  S pz Ud~] s=t" 
0 

Substituting in this expression the velocity profile in the film, Eq. (4), integrating over 
~, and using Eq. (6), we obtain 

3v l ( C)3 
(12) 
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Fig. 2. Number Nu vs dimensionless meniscus curvature 
in groove DI, D3 = 0.01536; r/ll = 0.i; W/Z; = 2.22 for 
various D=: 1-4) D2 = 30, 40, 50 , 60, respectively. 

Fig. 3. Variation of function Nu(D~) with parameter 
D3: D2 = 40; r/ll = 0.i; W/Ix = 2.22; 1-3) D3 equal 
to 0.0153, 0.01, 0.005, respectively. 

With the aid of Eq. (12), it is simple to obtain an expression for the heat-transfer coef- 
ficient ~c for condensation on a grooved surface. In a unit time period upon a fin of unit 
length there condenses a mass of liquid m (calculated for the half-sum of the fin and groove 
width W). An amount of heat equal to mL is then liberated. Then the mean thermal flux 
density is equal to q = mL/W and for the heat-transfer coefficient we have 

mL _. ~L ( d K )  
ac -- W ( r  v - -  ~xt) 3v l W ( r  v - -  rex ~ -  _ . 63 -~s  ~:l (13) 

We will transform to dimensionless variables in the problem of Eqs. (7)-(11). As the scale 
for the transverse coordinate s, we choose ~i, the half-width of the flat portion of the fin, 
and for the scale for film thickness measurement, we choose the quantity 

4 f ~  ~ t3 
V "1/ ~lI ' ' l~  ( T  v 1 T~ X [ } . (14) 

r Lo 

If we now transform to the variables 

s 6 s'-- , 6'-- , K' :Kli, (15) 

t hen  Eqs. (7 ) ,  (8) and the  boundary  c o n d i t i o n s  appea r  as (pr imes  o m i t t e d )  

~8 [1_i_ 1 [dS"~2]a12 d ( d K )  
--as z - ~ \ as / J Do_ (K -- Kp), (6 + D2D3) --~s 53 -~s --- l, (16) 

-ds  s=0 dK s=0 d6 =0, -~s =0, Kls=I/l,=Di, 

1 d6 I cos 
sin~ D= d~- ~=l/l, 

1 [d6/2  
F 1  + D'-~ \-d-s-sly=l/t, 

-}- (6l~=l/l' + D" i ) D.,.D' s ing=D~(Wl~  - - 1 ) , � 9  

(17) 

where the following notation is introduced for dimensionless combinations: 

It li ~l 
Di=---, Dz= , 03-- �9 (18) 

R., Y ~extli 
The parameter Dx specifies the dimensionless curvature of the meniscus in the groove; D2 
is the ratio of the length of the flat fin section to the film thickness scale y, and, since 
it contains the temperature head Tv--Text, it defines the intensity of condensation; D3 
characterizes the ratio of the external thermal resistance to the thermal resistance of the 
film. 
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The expression for the heat-transfer coefficient (13) in the new dimensionless vari- 
ables takes on the form 

Z t D2 (6 3 dK) (19) 

If we define the Nusselt number by the approximation Nu = acW/~l, then from Eq. (19) we 
obtain 

Nu= D~. (6 3 dK) (20) 
s = l / l l  , 

For fins and grooves of a given geometry, the right side of Eq. (20), as is evident from 
Eqs. (16), (17), depends on three dimensionless parameters DI, De, Ds. Thus, for heat 
transfer in condensation on a grooved surface of given geometry, we obtain the following 
generalized function: 

Nu= F(D~, De, D3). (21) 

The form of the function F(DI, De, D3) can be made clear by solving the problem of Eqs. (16), 
(17), the solution being performed numerically. System (16) was written in the form of a 
system of four first-order equations and solved by Newtonian iteration. At each iteration 
the matrix drive method was employed. 

The point s = I/Z1, at which the boundary conditions are specified, was chosen at some 
distance As from the point of intersection of the fin surface with the straight line joining 
the centers of curvature of the meniscus of the liquid in the channel and the rounded edge 
of the fin. Variation of As proved to have a very slight effect on the results. 

Calculations show that for a given heat-exchange agent and fixed groove and fin geom- 
etry, the most important factor affecting heat exchange is the curvature of the meniscus in 
the channel (parameter D~). The characteristic form of the dependence of Nu on meniscus 
curvature is shown in Fig. 2. With the exception of the small segment corresponding to low 
meniscus curvature in the channel, the number Nu decreases monotonically with growth in 
meniscus curvature. In the region of very small curvatures, the function Nu(D:) is increas- 
ing. Such Nu behavior is caused by the form of the film created on the fin. With very 
small meniscus curvature in the groove the film surface is close to planar, so that the 
liquid drains from the fin to the groove poorly under the action of surface tension. With 
increase in curvature, the draining of liquid is improved, and the film becomes thinner on 
the average, leading to an increase in Nu. With further increase in DI the film thickness 
in the middle part of the fin increases while it decreases beyond the edge, hindering 
liquid drainage, so Nu falls. 

Figure 2 also shows the variation of the function Nu(D:) with change in Di. With in- 
crease in D=, which is the ratio of the length of the plane fin segment to the characteristic 
film thickness dimension y, the number Nu increases. 

Variation of the function Nu(D:) with Ds is shown in Fig. 3. With increase in D3 Nu 
decreases. 

The results obtained indicate that by appropriate choice of grooved condensation sur- 
face parameters, the heat-transfer characteristics may be improved. 

NOTATION 

P, pressure; U, velocity; S, n, coordinates across fin and normal to fin surface; ~, 
dynamic viscosity; T, temperature, %, thermal conductivity coefficient; p, density, L, 
latent heat of evaporation; ~, heat-transfer coefficient (angle in Fig. i); ~, surface 
tension coefficient; v, kinematic viscosity; K, curvature; Rm, radius of curvature of 
meniscus in groove; r, radius of curvature of fin; W, half sum of groove and fin width; 
l~, half width of plane segment of fin; Z, half length of film on fin. Indices: l, liq- 
uid; v, vapor; ext, external. 

i. 
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